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ABSTRACT We quantitatively describe the creation and evolution of phase-separated domains in a multicomponent lipid
bilayer membrane. The early stages, termed the nucleation stage and the independent growth stage, are extremely rapid
(characteristic times are submillisecond and millisecond, respectively) and the system consists of nanodomains of average
radius ;5–50 nm. Next, mobility of domains becomes consequential; domain merger and fission become the dominant
mechanisms of matter exchange, and line tension g is the main determinant of the domain size distribution at any point in time.
For sufficiently small g, the decrease in the entropy term that results from domain merger is larger than the decrease in
boundary energy, and only nanodomains are present. For large g, the decrease in boundary energy dominates the unfavorable
entropy of merger, and merger leads to rapid enlargement of nanodomains to radii of micrometer scale. At intermediate line
tensions and within finite times, nanodomains can remain dispersed and coexist with a new global phase. The theoretical critical
value of line tension needed to rapidly form large rafts is in accord with the experimental estimate from the curvatures of budding
domains in giant unilamellar vesicles.

INTRODUCTION

It is agreed that cell membranes are nonuniform dynamic

structures. However, there is practically no agreement what-

soever as to timescales, nature, or the forces that govern the

lateral molecular assemblies that comprise membranes. Esti-

mates of the size of these assemblies, often termed domains or

rafts, are approximately tens of nanometers. Putative rafts

(1–6) are enriched in cholesterol and sphingolipid. It is dif-

ficult to measure their physical properties (3–5,7), perhaps due

to their small size or their transitory nature (8,9), but there are

proposals that membrane domains play important functional

roles in the trafficking and sorting of proteins, cell signaling,

viral-induced fusion, etc. (1–3). The mechanism of domain

formation in cell membranes remains obscure.

In lipid bilayers (including those having lipid composi-

tions matching that of cell membranes), large domains, of the

order of 5–10 mm in diameter, are readily observable by fluo-

rescence microscopy (10–14).

Rafts are thicker than surrounding membrane and repre-

sent bilayer structures (13,15,16). Lipids in such domains are

in a liquid-ordered state, i.e., the cross-sectional area per lipid

molecule is smaller than that of a fluid-disordered membrane

(5,10,15). These domains are mobile and grow by their

merger. They rapidly resume their circular shape after external

perturbations (13), indicating that a significant line tension

exists at the raft-bilayer interface. Line tension has been ex-

perimentally estimated for multicomponent lipid vesicles (17).

Small, nanoscopic domains have also been detected in lipid

bilayers (6,18,19). In vesicles, line tension leads to a three-

dimensional budding of domains, and theory that accounts for

budding has been extensively developed (20,21). We consider

phase-separation kinetics for the case of a lipid membrane that

is always flat. The results of our calculations, which ignore

membrane curvature, are appropriate for and directly applica-

ble to the multitude of experimental studies of rafts that have

used planar bilayers and giant unilamellar lipid vesicles.

It is generally thought that for lipid bilayer membranes,

domains form as a result of phase separation. In support of

this view, domains form upon lowering the temperature of a

homogeneous lipid bilayer membrane. However, it is not

clear why micrometer-scale domains remain separated from

each other for long times. One possibility is that repulsive

forces between domains kinetically stabilize them. It is also

not understood why nanodomains sometimes remain stable,

rather than increasing in size up to complete phase separa-

tion. In cell membranes, nanodomains may be created by

lipid wetting of proteins (22–24), rather than by phase

separation. Obviously, here wetting would not be complete;

instead, only a relatively thin lipid film layer would form

around the protein molecule and this liquid-ordered layer

could have somewhat different physical properties than that

of a global liquid-ordered phase. Answering many basic

questions regarding domains in model and biological mem-

branes requires understanding kinetics of domain formation,

growth, and stability. Unfortunately, even for lipid bilayer

membranes, systematic experimental kinetic studies have not

yet been undertaken. Theoretical understanding of kinetic

phenomena is also lacking. A kinetic theory of phase separa-

tion has been quantitatively developed for three-dimensional

solid solutions (25–34). However, a lipid bilayer membrane
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is a two-dimensional system in the liquid state and direct

collisions of mobile domains should strongly affect the

kinetics of matter redistribution. A rigorous theory that incor-

porates all pathways of redistribution of matter in liquid,

multicomponent membranes, needs to be formulated.

In this study, we approach this problem by utilizing theories

that faithfully describe phase separation and domain growth in

fields other than membrane biophysics. We modified and/or

generalized these theories so that they apply to lipid bilayers

and have justified these modifications. Calculations show that

domain growth is divided in time and size into two essentially

different regions: at short times (approximately milliseconds)

and small domain sizes (less than tens of nanometers), the

system resembles a solid solution with immobile domains.

Here, domains quickly absorb lipid from their supersaturated

surrounding milieu. At long times, however, direct interaction

of mobile domains to merge, and the budding-off of nano-

domains through domain fission, are the dominant means of

domain growth. The theory predicts that at low line tension,

entropy and boundary energy compete to trap nanodomains in

a long-lived state (approximately hours). At somewhat higher

line tensions, large domains form, but nanodomains coexist

with them. At even higher line tensions nanodomains cease to

exist, rapidly merging into micrometer-scale domains. Large en-

ergy barriers against close domain contact may kinetically hin-

der domain merger for larger domains as they progress to form

one global phase.

KINETICS OF MATTER REDISTRIBUTION

Setting up the problem

We consider a multicomponent liquid membrane consisting

of lipids. We assume that the components are homogenously

mixed, but the membrane is initially in a metastable state that

can undergo a first-order phase transition. The kinetics of

phase separation can be subdivided into stages. In the first

stage— nucleation—fluctuations within the homogeneous

medium create nuclei of a new phase. If a nucleus enlarges to

above a critical size, enlargement continues spontaneously

by absorption of supersaturated matter from the surrounding

solution. The degree of supersaturation in the surrounding

solution decreases as these nuclei enlarge, resulting in the

cessation of formation of new supercritical nuclei. The sec-

ond period of growth is referred to as the independent growth

stage, where existing domains continue to grow by accumu-

lating matter from the surrounding membrane.

The original theoretical analysis of the kinetics of phase

separation assumed single-component, three-dimensional

solid solutions (30,31). This was extended to multicompo-

nent three-dimensional systems (25) under the assumption

that the new phase has a well-defined composition that is

independent of domain size. This simplifying assumption

allows the domain to be assembled from elemental structural

units (referred to as quasi-molecules) and domain growth

consists of incorporation of additional quasi-molecules. The

concept of fixed quasi-molecules imposes equations for the

partial fluxes of components from the surrounding mem-

brane to the domains. This approach can be directly applied

to a two-dimensional system by using a scaling procedure.

To explicitly demonstrate the validity of the approach to a

two-dimensional membrane, we combine the scaling ap-

proach with direct calculations. In relaxing the condition of

solid solutions, the domains are mobile.

Consequently, rafts grow after the independent growth

stage continues by two processes in parallel, merger of mobile

domains, and Ostwald ripening. Ostwald ripening is a process

whereby the equilibrium concentration of domain material

within the surrounding solution is higher near a domain of

small radius than large radius; material thus diffuses from small

to large domains. The small domains disappear as they dis-

solve their constituents into the surrounding solution; the larger

domains accumulate this material to become still larger. This

phenomenon is analogous to redistribution of mass from small

to large water droplets, mediated by water vapor moving from

high to low pressure, the dependence of pressure on radius de-

scribed by the Laplace law.

These two different modes of matter redistribution superim-

pose. We calculate each of these rates to determine which mech-

anism dominates during successive stages of phase separation.

To use parameters that explicitly relate to experiment, we choose

a standard bilayer consisting of 1:1 DOPC/DPPC 1 30%

cholesterol. Both micrometer-size and nanoscopic domains

have been observed for this mixture and the composition of the

liquid-ordered (L0) and liquid-crystalline (La) phases have been

derived (18). The L0 phase consists of 5% DOPC, 53% DPPC,

and 42% cholesterol at 20�C; theLa is 59% DOPC, 14% DPPC,

and 27% cholesterol. Cholesterol is only somewhat enriched in

the L0 phase (i.e., the domain); the saturated lipid, DPPC, is

more significantly enriched. The unsaturated DOPC is largely

excluded from theL0 domain. For simplicity, we assume that the

L0 domain contains a 1:1 mixture of DPPC and cholesterol and

we consider this as the structural unit of the domain. The area

fraction of the domain-forming phase fN, found from the lever

rule, isfN� 0.5. Altering the value of the parameterfN within

the range 0.1 , fN , 0.5, permitted for the phase diagram of

our standard bilayer (18), verifies that our conclusions have

general validity. Domain ensemble behavior depends strongly

on the value of line tension. Unfortunately, in the literature there

is only one estimate of the line tension of micrometer-sized

domains for phospholipid bilayers, g � 0.9 pN (17). There is

indirect evidence that g is smaller, and it obviously depends on

membrane composition. Therefore, in numerical estimates of

the rates of the stages of matter redistribution we varied the

value of g.

Nucleation

We consider nucleation in a two-dimensional metastable

multicomponent membrane. Concentrations’ fluctuations
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lead to the formation of small nuclei of new phase. If the

nucleus becomes large enough, the decrease in energy re-

sulting from a greater number of favorable interactions

within the nucleus exceeds the unfavorable energy necessary

to create the one-dimensional circular interface; the nucleus,

now supercritical, grows irreversibly. Because we assume

that the composition of the evolving nucleus does not depend

on its size, the growth of a nucleus is due to addition of struc-

tural units that are defined by stoichiometric coefficients fnig.

The area per structural unit is

a ¼ +
i

niai; (1)

where ai is the cross-sectional area per molecule of ith com-

ponent. Because the subcritical nuclei remain in thermody-

namic equilibrium, their size distribution function is described

by the equilibrium distribution function. According to classical

fluctuation theory (30), the equilibrium distribution function of

the nuclei f0(r) depends exponentially on the minimum work

E(r) necessary to create a nucleus of radius r:

f0ðrÞ;expð�EðrÞ=kTÞ: (2)

This function is normalized so that f0(r)dr is the number of

the nuclei with radius (r, r1dr) in an area of 1 cm2. The area

and boundary terms yield

EðrÞ ¼ pr
2

a
m�+

i

nimi

� �
1 2prg; (3)

where g is line tension, m is the chemical potential of the

structural unit within nucleus, and mi is the chemical potentials

of ith component in the surround phase. For an ideal solution,

mi can be expressed as

mi ¼ m
0

i 1 kTln ci; (4)

where mi
0 is the standard chemical potential of ith component

and ci is the bulk concentration of ith component measured in

1/cm2. E(r) has a maximum at a critical radius rc, given by

rc ¼
ag

+
i

nimi � m
¼ ag

kTln
Q

i

c
ni

i

� �
1 +

i

nim
0

i � m

: (5)

Equations 3 and 5 yield

EðrÞ ¼ pgrc �
pðr � rcÞ2

rc

g: (6)

From Eq. 6 we obtain

f0ðrÞ ¼ Q exp �pgrc

kT

� �
exp

pg

rckT
ðr � rcÞ2

� �
; (7)

where Q is a pre-exponential factor that cannot be expressed

in terms of macroscopic properties of the system. We esti-

mate it by supposing that Q is proportional to the number of

nucleation sites (25,26). Q is determined by the number of

configurations by which components can arrange into

a structural unit, Q;
Q

i c
ni

i . This expression immediately

follows from the intuitively appealing hypothesis that the

rate of creating a minimal nucleus is proportional to the

probability that all components of the structural unit meet.

The normalization condition for f0(r) and the relationship

dr ¼
ffiffiffi
a

p
yields Q ¼

Q
i c

ni

i a
�1=2.

In addition to the equilibrium distribution function, we

require a kinetic size distribution function f(r, t) to calculate

the rate of phase separation. Nuclei growth is described by

the Fokker-Planck equation (30,33)

@f

@t
¼ �@j

@r
¼ � @

@r
�B

@f

@r
1Uf

� �
; (8)

where j is the flux (number of nuclei passing through the

critical radius per second, per cm2) in size-space, B is a nuclear

size-diffusion coefficient in cm2/s, and U is the nucleus

mobility in r-space in cm/s. The relation between B and U can

be found at equilibrium, j ¼ 0, as

U ¼ B

f0

@f0
@r

: (9)

At steady state, j ¼ const, allowing us to rewrite Eq. 8 in

the form

�Bf0
@

@r

f

f0
¼ j: (10)

After integration, we obtain

f =f0 ¼ �j

Z
dr=ðBf0Þ1 p; (11)

where f0(r) is defined by Eq. 7. The constants j and p can be

found from the boundary conditions that f/f0 / 1 for r / 0

(because equilibrium is reached in this limit), and that f/f0 ¼
0 as r / N (because f0(r) tends to infinity, whereas f(r)
remains finite). Equation 11 has a solution of the form

1=j ¼
Z N

0

dr=ðBf0Þ: (12)

The integrand is sharply peaked at r ¼ rc. We use Eq. 7

around this point and obtain the stationary solution of Eq. 8

for the flux of nuclei in r-space as

j ¼
ffiffiffiffiffiffiffiffiffi
g

rckT

r
BðrcÞf0ðrcÞ: (13)

To obtain the flux in terms of measurable quantities, we

need to evaluate the diffusion coefficient, B, in r-space. We

do so by a macroscopic approach. Consider a supercritical

nucleus moving unidirectionally toward large radii. This

allows us to ignore diffusion and to write the flux as j ¼ Uf.
The coefficient U is a velocity in size-space, dr/dt. A macro-

scopic nucleus grows by accumulation of structural units

diffusing from the bulk to the nucleus interface. The solution

of the two-dimensional equation for steady-state diffusion

yields the partial flux of ith component ji,

Mechanisms of Domain Creation and Growth 191

Biophysical Journal 91(1) 189–205



ji ¼ 2pD
ci � cir

lnðr�=rÞ
; (14)

where D is the diffusion coefficient in the membrane, r* is

the cutoff radius (which can be approximated by the size of

whole system), and cir is the equilibrium concentration of ith

component near a nucleus of radius r. In Eq. 14, we assume

that all components have the same diffusion coefficients. To

preserve the nucleus composition, it is necessary to impose

the condition on partial fluxes of

ji
ni

¼ jk
nk

¼ . . . : (15)

Equation 15 means that the growth of a nucleus proceeds

via incorporation of structural units exclusively. Equations

14 and 15 allow us to find the velocity in size-space, dr/dt.
The details of the calculations are described in Appendix,

where the equation for U is obtained as

U ¼ dr

dt
¼ a2Dcc̃cNg

kTrcr
2
lnðr�=rÞ

ðr � rcÞ; where cc̃cN¼ +
i

n
2

i

ciN

� ��1

:

(16)

Here, ciN is the equilibrium concentration of ith compo-

nent at a straight interface (boundary of domain with infinite

radius) and cc̃cN is the effective equilibrium concentration.

From Eqs. 7, 9, and 16 we obtain B,

B ¼ kTrc

2pgðr � rcÞ
U ¼ a

2
Dcc̃cN

2pr
2
lnðr�=rÞ

: (17)

As expected, B is greater for a small nucleus than for a

large one. From Eqs. 7, 13, and 17, we obtain the final ex-

pression for flux density,

j ¼
ffiffiffiffiffiffiffiffiffiffiffi
g

arckT

r Y
i

c
ni

i

 !
a2Dcc̃cN

2pr
2

c lnðr�=rcÞ
exp �pgrc

kT

� �
: (18)

As supersaturation decreases during the nucleation stage,

the critical radius increases and the height of the energy

barrier against irreversible growth increases. Both effects

cause a significant decrease in flux, because j depends ex-

ponentially on rc (Eq. 18). We assume that nucleation ceases

when the flux drops 10-fold to estimate the duration of the

nucleation stage tn, the value of critical radius rc
f at t¼ tn, and

the total number of created nuclei Nf. The details of these

calculations can be found in the Appendix. Using Eqs. A13–

A18 and taking g ¼ 0.4 pN, fN ¼ 0.5, and D ¼ 3 3 10�8

cm2/s (35), we obtain rc
f ¼ 7 nm,Nf ¼ 63 109 1/cm2, and tn ¼

2 3 10�4 s. For fN ¼ 0.1, we have rc
f ¼ 5 nm, Nf ¼ 2 3 109

1/cm2, and tn ¼ 8 3 10�5 s. Clearly, the nucleation time is

very short and is relatively insensitive to variation of fN.

Independent growth stage

At the conclusion of the nucleation stage, Nf supercritical

nuclei have appeared in the membrane and, for all practical

purposes, additional nuclei are no longer created. The nuclei

that already exist continue to grow independently of each

other by accumulating matter from the surrounding mem-

brane (Fig. 1 A). This process leads to decreasing supersat-

uration and thus to declining growth. We estimate the time

necessary for this decline (i.e., the duration of this stage, tig)

and the average size of the nuclei at t ¼ tig by utilizing the

constancy of the total number of nuclei (Nf) during the

independent growth stage. The nuclei that were created over

time tn now migrate in r-space during independent growth.

That is, diffusion in r-space is not of consequence during

independent growth. Because (as will be shown below) tig .

tn, the width of the distribution function of the nuclei is

determined by diffusion during the brief nucleation phase

and thus this width remains rather narrow during indepen-

dent growth. In fact, the reciprocal dependence of the rate,

dr/dt, on r (i.e., mobility decreases with size, Eq. 16) further

assures that the distribution remains sharply peaked. There-

fore, we can use the average radius Æræ in Eq. A12 to calculate

the flux of matter into the nuclei. Using Eqs. A11 and A12,

we obtain

FIGURE 1 A schematic representation of the main stages of matter redistribution in the course of phase separation: panel A is a stage of independent growth

of each domain; panel B is Ostwald ripening; panel C is domain merger; and panel D illustrates two-dimensional budding of nanodomains from a large domain.
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dÆræ
dt

¼ aDcc̃cN
Ærælnðr�=ÆræÞ

D� ag

kTÆræ

� �
; D ¼ +

i

ni

ci � ciN

ciN

; (19)

where D is the total supersaturation. The condition of mass

conservation has the form

D ¼ Din �
pÆræ2

a

Nf

cc̃cN
; (20)

where Din is the initial total supersaturation. Substituting

Eq. 20 into Eq. 19, we obtain

dÆræ
dt

¼ D

Ærælnðr�=ÆræÞ
acc̃cNDin � NfpÆræ

2 � a
2cc̃cNg

kTÆræ

� �
: (21)

We solved this equation numerically using the initial

condition Ær(0)æ ¼ rc
f.

To estimate tig, we compare the rate of growth from Eq.

21 with the Ostwald ripening rate using the obvious condi-

tion (dÆræ/dt)ig ¼ (dÆræ/dt)or at t ¼ tig. The expression for

dÆræ/dt in the case of Ostwald ripening can be easily obtained

from Eq. 25 (see below). Letting g ¼ 0.4 pN and fN ¼ 0.5,

we obtain tig ¼ 6 3 10�3 s and Ær(tig)æ � 50 nm. For fN ¼
0.1, tig ¼ 1.5 3 10�3 s and Ær(tig)æ � 40 nm. Therefore (as

stated above), tig . tn. However, tig is rather short and, as

we showed to be the case for tn, insensitive to the precise

value of fN.

Ostwald ripening in the case of immobile domains

During Ostwald ripening, the surrounding medium is only

slightly supersaturated. The subcritical domains dissolve and

their material is accumulated by the remaining domains,

which become larger (Fig. 1 B). Ostwald ripening in a three-

dimensional dilute solid solution is quantitatively described

by Lifshitz-Slezov theory (30,31), which results in the well-

known asymptotic law for domain radius growth,

Æræ ¼ 8Dn2cNs

9kT
t

� �1=3

; (22)

where s is surface tension, v is the molecular volume of the

evolving phase, and cN is the equilibrium concentration at a

plane surface. The size-distribution function of domains is

narrow and the average radius Æræ is equal to critical radius.

The number of domains, N(t), as a function of time (increase

of domain size is accompanied by a decrease of the number

of domains) is given by

NðtÞ ¼ D0kT

sDncNt
; (23)

where D0 is the initial supersaturation. At the beginning of

Ostwald ripening, supersaturation is small and tends to zero

as t�1/3.

Numerous studies have shown that the cube-root Lifshitz-

Slezov law is very general. Lifshitz-Slezov theory can be

applied for arbitrary volume fractions (28). It is commonly

assumed that Lifshitz-Slezov theory developed for three-

dimensional systems can be applied to two-dimensional systems

(29). For example, simulating a two-dimensional spin-exchange

Ising model (which exhibits a second order, rather than a first-

order, phase transition) yields a t1/3 law (28). This power law

has been explicitly demonstrated by Marqusee (36) for a two-

dimensional, one-component solid solution. In this case,

Æræ ¼ b0

Da
2
gcN
kT

t

� �1=3

; (24)

where b0 is a numerically calculated factor of order one. It is

easy to show that Eq. 24 follows from Eq. 22, derived for a

three-dimensional system, by scaling s / g, n / a.

It has also been shown that the results obtained for a one-

component, three-dimensional system generalize to the case

of multicomponent solid solutions (25,32). This can be readily

seen by substituting DcN in Eq. 22 into +
i
n2

i =DiciN

� ��1
. By

assuming that all Di are the same and equal to D, we arrive at

the simple substitution, cN/cc̃cN ¼ +
i
n2

i =ciN

� ��1
.

We solved the Ostwald ripening problem for a two-

dimensional multicomponent system (see Appendix) and

proved that the substitution cN/cc̃cN is valid for the two-

dimensional case. We obtained

Æræ ¼ b0

Da
2
gcc̃cN
kT

t

� �1=3

; where cc̃cN ¼ +
i

n
2

i

ciN

� ��1

: (25)

The total number of domains depends on time as

NrðtÞ ¼
kT

Da
2
gcc̃cN

� �2=3
fN

p
r0t

�2=3
; (26)

where r0 is a numerically calculated factor of order one.

Thus, during Ostwald ripening, the average radius increases

slowly and the rate of increase becomes less with time. Any

domains of radius less than the critical radius rc dissolve and

those greater than rc slowly enlarge. In essence, domain

radius remains narrowly peaked around Æræ (which is slightly

greater than rc) as domain size slowly migrates in r-space.

(Below, we use Eqs. 25 and 26 to estimate the rate of

Ostwald ripening.) The dependence of the kinetics of matter

redistribution on radius Æræ is readily appreciated from the

characteristic time, tr, for the number of domains to decrease

twofold. Equations 25 and 26 yield

tr ¼ ð2
ffiffiffi
2

p
� 1Þ kTr

3=2

0

Da
2
gcc̃cN

Æræ3
: (27)

Thus, tr does not depend on fN. For our standard bilayer

and g ¼ 0.2 pN, Eq. 27 yields tr ¼ 200 s for Æræ ¼ 20 nm;

tr ¼ 1600 s for Æræ ¼ 40 nm; tr ¼ 3000 s for Æræ ¼ 50 nm;

tr ¼ 24000 s for Æræ¼ 100 nm; and tr ; 200 h for Æræ¼ 1 mm.

Clearly, Ostwald ripening is not an effective means for

growth of immobile domains for Æræ .50 nm. In fluid

membranes, domains are mobile and their merger can readily

dominate and determine the rate of matter redistribution.
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Merger of mobile domains

We first calculate the rate of domain merger by adapting

Smoluchowski’s theory of rapid coagulation (37,38) to a

two-dimensional system. We then consider the slowing

of coagulation due to repulsive forces between approaching

domains.

The initial stage of rapid coagulation can be described as a

second-order association between two domains (Fig. 1 C)

�dN0

dt
¼ KrN

2

0 ; (28)

where N0 is concentration in cm�2 of the domains of radius

r0 and Kr is the rate constant. In the absence of repulsive

forces between approaching domains, domains merge im-

mediately upon contact. The rate Kr is limited by diffusion of

domains toward a central domain. Placing the origin of

coordinates in the center of this domain, we can write the

steady-state diffusion equation as

1

R

d

dR
R
dN

dR

� �
¼ 0; (29)

with boundary conditions

NðR ¼ 2r0Þ ¼ 0 and NðR ¼ r�Þ ¼ N0; (30)

where r* is the cutoff radius. The solution of Eq. 29 is

NðRÞ ¼ N0ln
R

2r0

�
ln

r�
2r0

: (31)

The flux toward the central domain is equal to

J ¼ 2pRDd

dN

dR

				
R¼r0

¼ 2pDdN0

lnðr�=2r0Þ
: (32)

To account for the mobility of the central domain, we need

to double the diffusion coefficient (or equivalently the flux)

in Eq. 32. Summing up the diffusion flux over N0 domains,

we obtain

�dN0

dt
¼ 4pDdN

2

0

lnðr�=2r0Þ
: (33)

Therefore, we have for the coagulation rate constant

Kr ¼
4pDd

lnðr�=2r0Þ
: (34)

We calculate Dd according to the Saffman-Delbruck

equation (39),

Dd ¼
kT

4phh
ln

hh

hwr0

� e

� �
; (35)

where h is the viscosity of the lipid bilayer, hw is the

viscosity of aqueous solution, h is the thickness of the

bilayer, and e is Euler’s constant (e � 0.577). Equation 35 is

valid for r0 � hh/hw � 1 mm; taking hh¼ 6 3 10�7 g/s and

hw ¼ 10�2 g/(cm*s), we obtain Dd � 10�8 cm2/s for r0 ; 50

nm. The same value of Dd can be used for any domain of

radius on the order of tens of nanometers, because Dd depends

weakly on r0. For larger domains, the Saffman-Delbruck equa-

tion is

D1 ¼
kT

4phh
ln
r�
r0

� 1

2

� �
: (36)

In contrast to Eq. 35, the diffusion coefficient of Eq. 36

is independent of friction between the domain and water.

Because this friction should be more consequential as r
becomes larger, we explicitly consider it by utilizing the ex-

pression for the viscous drag, b, acting on a disk moving

along the plane of a membrane (40),

b ¼ 32hwr0

3
: (37)

This leads to a diffusion-coefficient D2,

D2 ¼
kT

b
¼ 3kT

32hwr0

: (38)

The combination of the Saffman-Delbruck and the viscous

drag term yields a net diffusion-coefficient Dd given by

Dd ¼
1

D1

1
1

D2


 ��1

; (39)

yielding Dd ¼ 3 3 10�9 cm2/s for r0 ¼ 1 mm.

It is worth noting that both Dd and Kr depend weakly on r0.

Because the (second-order) rate constant for domain merger

is relatively independent of domain size, we set Kr ¼ const

and use Eq. 28 to calculate the change of the total domain

concentration NmðtÞ ¼ +
j
Nj (38),

�dNm

dt
¼ Kr

2
NmðtÞ2

: (40)

Solving Eq. 40, we come to the time-dependence of the total

number of domains,

NmðtÞ ¼
N0

11 2pDdN0t=ðln
r�

2r0

Þ
: (41)

Equation 41 can be easily generalized to the case of slow

coagulation,

NmðtÞ ¼
N0

11 2pDdN0t=ðW ln
r�

2r0

Þ
; (42)

where the inhibition factor W has the form (37)

W � ðld

ffiffiffiffi
p

p
=4r0ÞexpðVmax=kTÞ: (43)

Here, Vmax is the height of the energy barrier hindering close

contact between two circular domains of radius r0, and ld

is the effective width of the barrier.

Repulsive forces between two approaching domains could

occur for several reasons. We previously showed that as

a consequence of the elastic properties of a membrane, a
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repulsive force definitely occurs if a height (i.e., thickness)

mismatch exists between the domains and the surrounding

membrane (41): the height of the elastic deformations at

the raft boundary oscillates as it decays and the oscillations

cause repulsion between two domains. We obtain Vmax

according to the Deryaguin approximation (37), yielding

Vmax � 2
ffiffiffiffiffiffiffiffiffiffiffi
2ldr0

p
DEmax, where DEmax is the height (per unit

length of boundary) of the energy barrier separating two

domains. The height and width of the barrier calculated

according to the elastic theory of continuous membranes (41)

yields ld ¼ 3 nm and DEmax � 0.1 pN for g ¼ 0.4 pN. This

barrier depends slightly on g: For g ¼ 0.2 pN, DEmax � 0.07

pN. Because Vmax }
ffiffiffiffi
r0

p
, W is inconsequential for small

domains, but is huge for large ones. Numerically, W ; 1 for

r0 ¼ 50 nm and W ; 104 for r0 ; 1 mm.

The characteristic time for domain collisions can be esti-

mated from Eq. 42 as

tm ¼ W lnðr�=2r0Þ=2pDdN0: (44)

For the number of domains to decrease twofold, we obtain

for fN¼ 0.5 that tm ¼ 0.05 s for r0 ¼ 50 nm and W; 1, and

that tm ; 1 h for r0 ¼ 1 mm and W; 104. The importance of

the barriers is readily seen by setting W ; 1 for r0 ¼ 1 mm,

yielding tm ; 3 s. As expected, these times are larger if

domains occupy a smaller fraction of the membrane area.

If fN¼ 0.1, we obtain tm ¼ 0.2 s for r0 ¼ 40 nm and W; 1,

tm ; 5 h for r0 ¼ 1 mm and W ; 104, and tm ; 15 s for

r0 ¼ 1 mm and W ; 1.

Domain fission and two-dimensional budding

The increase in domain size that results from merger can, in

principle, be reversed if the domains divide. We estimate the

characteristic time for a domain of radius R to divide into two

domains of radii r and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
(Fig. 1 D), assuming that

the bilayer remains flat. That is, we ignore any tendency of a

domain to bend out of the plane of the membrane (20). The

difference in boundary energies, DE, is given by

DE ¼ gð2pr1 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2 � r
2

p
� 2pRÞ: (45)

If there is no activation barrier against fission, the charac-

teristic time of division tf is

tf ¼ 1=v exp
DE

kT

� �
; (46)

where v is the characteristic frequency of the oscillation of

the boundary. Boundary fluctuations, known as capillary

waves, have eigenfrequencies (40) of

vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

rR3lðl� 1Þðl1 2Þ
r

; (47)

where r is the membrane density and l is the eigenvalue for

wavelength l ¼ 2pR/l. We let l have the size of a domain

resulting from fission (i.e., l � 2r or l ¼ pR/r), to obtain,

from Eqs. 45–47,

tf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR

3

glðl� 1Þðl1 2Þ

s
exp

g

kT
ð2pr12p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2�r
2

p
�2pRÞ

� �
:

(48)

The chance of a large domain dividing into two domains of

comparable size (fission) is negligible: for R ¼ r
ffiffiffi
2

p
and r ¼

0.1 mm, we obtain that for g ¼ 0.4 pN, tf � 108 s, an

impossibly long time. However, a small nanodomain can

split off from a large domain (two-dimensional budding). For

g ¼ 0.4 pN and R¼ 1 mm, it would take tf � 0.2 s for an r¼
30 nm domain to split off, but tf � 200 s for an r ¼ 40 nm

domain. Thus, the time-dependence is extremely sensitive to

the size of the bud. The likelihood for these nanodomains to

split off from a large domain also depends strongly on the

line tension. A domain of r¼ 40 nm would take tf � 0.4 s to

split from an R¼ 1 mm domain if g ¼ 0.2 pN (instead of 200

s for g ¼ 0.4 pN). Although large domains cannot, as a

practical matter, split into two equally sized halves, small

domains can split in half if g is sufficiently low. For g ¼ 0.4

pN, tf � 0.1 s for a small domain to split into two r ¼ 40 nm

domains; for g ¼ 0.2 pN, tf � 0.01 s. Because Eq. 45

predicts DE / r as r / 0, the maximum rate of two-

dimensional budding occurs for pinching off a single struc-

tural unit.

The relative contributions of the various stages
to matter redistribution

We have estimated the rates at which matter redistributes

by all modes and during the various stages. As shown, the

nucleation and independent growth stages are very short

(10�4–10�3 s). The use of Eq. 42 shows that merger during

the independent growth stage leads to a negligible (,1%)

decrease in the number of domains. The membrane can thus

be considered a solid solution of immobile domains during

these early stages. However, for t . tig and rc . 40–50 nm,

the stages of Ostwald ripening and merger/fission proceed in

parallel. The rate of merger (Fig. 2 A, curve 2) is clearly

much faster than the kinetics of Ostwald ripening (curve 1)

for nanodomains (r . 40 nm) over the first few seconds,

tm/ tr ; 10�4. Growth for micrometer-scale domains (Fig.

2 B) is also much faster by merger (curve 3, note timescale of

hours) than by Ostwald ripening (curve 1), even though the

domains have relatively low mobility. Even when large

domains significantly repel each other (Fig. 2 B, curve 2),

merger is the dominating process. Quantitatively, dNm/dt ¼
1010 cm�2 s�1 for r ¼ 40 nm; dNm/dt ¼ 102 cm�2 s�1 for

r ¼ 1 mm and W ; 104; and dNm/dt ¼ 104 cm�2 s�1 for

r ¼ 1 mm and W ; 1.

These estimates assume that fN ¼ 0.5 and g ¼ 0.4 pN.

However, as we have shown, the results are not strongly

dependent on the value of fN. The mean radius at the end of

independent growth is 50 nm for fN ¼ 0.5 and 40 nm for

fN ¼ 0.1 and the Ostwald ripening characteristic time is
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completely independent of fN. The characteristic times for

merger of nanodomains is also relatively insensitive to fN¼
tm ; 0.05 s for fN ¼ 0.5 and 0.2 s for fN ¼ 0.1. The value

of g does not affect the characteristic times of merger, but

it does affect characteristic times of Ostwald ripening. For

instance, tr ¼ 1600 s for g ¼ 0.2 pN (for Æræ ¼ 40 nm),

whereas tr ¼ 800 s for g ¼ 0.4 pN.

We are thus led to a general view of domain evolution. At

t ; tig, the system consists of nanodomains with a narrow

size distribution that is peaked at Æræ ; rc ; 50 nm. The

population of small nuclei (r ; a few nm) is in thermody-

namic equilibrium with the surrounding membrane and they

do not interfere with the subsequent phase separation. For t.
tig, supersaturation is very small and asymptotically declines

to zero. Phase transition at t . tig is not completed yet and,

strictly speaking, the system is not at a state of thermody-

namic equilibrium. However, Ostwald ripening is very slow

and matter redistribution is overwhelmingly determined by

very fast (;0.1 s) merger and fission of mobile domains.

When the merger and fission rates are equal, we can assume

that the total area of the domain phase is virtually constant

to treat the system of nanodomains as an ensemble of im-

miscible particles in quasi-equilibrium. Thereby standard

approaches of statistical thermodynamics yield calculated do-

main size distributions for times tig , t, tr. (See Discussion

for an elaboration of the difference between equilibrium and

quasi-equilibrium.)

STABILIZATION OF NANODOMAINS

We first calculated the distribution of domain size by con-

sidering the ensemble of domains after the independent

growth stage (see Appendix). This approach gave the number

of domains as a function of domain radius for different values

of g (Fig. 3). The distribution of domain size is very sharply

peaked at smaller radii. The characteristic length of the decay

of the distribution, ;3 nm, slightly increases as g increases.

The area, Ar, occupied by the domains, corresponding to

curves 1 and 2 in Fig. 3, is independent of g. Hence,

nanodomains are favorable for low line tensions (i.e., g ,

0.18 pN) and they are almost uniform in size, peaked at

r¼ rmin. This peaking occurs because for small g, the decrease

in boundary energy is insufficient to compensate for the de-

creased entropy that results from domain merger.

In the coexistence region, gmin , g , gmax, the approach

described in the Appendix fails (see Appendix), so we

formulated the following simplified model. It gives results

that are self-consistent over a wide range of parameters.

We assume that the domain-forming phase exists in only

two forms: one a monodisperse ensemble of n small domains

of radius r ¼ rmin, and the other a single large domain of

unknown radius R. The free energy of this system can be

obtained directly from Eq. A51, as

F ¼ nkT ln
n

N
1 2prmingn1 2pgR: (49)

Matter conservation yields

pR
2
1 npr

2

min ¼ Ar: (50)

If only small domains of radius r ¼ rmin are present, n ¼
nmax ¼ Ar=pr

2
min and we can obtain the dependence F1(g),

which is described by the first two terms in Eq. 49. This

linear function is shown in Fig. 4 A. At the other extreme,

FIGURE 2 The decrease in the number of domains caused

by Ostwald ripening and domain merger. (A) The domains

are initially small, r(0)¼ 40 nm, and the decreases in domain

number are shown over a few seconds. The dotted curve (1)

shows the decrease caused by Ostwald ripening (Nr(t), right-
hand ordinate). The solid curve (2) illustrates the decrease

caused by nanodomain merger (Nm(t), left-hand ordinate).

(B) The domains are initially large, r(0) ¼ 1 mm, and the

decrease in domain number are shown over the time-course

of hours. The dotted curve (1) corresponds to Ostwald

ripening and solid curves (2 and 3) illustrate the consequence

of microdomain merger. For curve 2, the merger inhibition

factor W ¼ 104, and for curve 3, W ¼ 1, accounting for the

much slower kinetics of curve 2. A comparison of curves 1–3

demonstrates that domain merger is much more conse-

quential for redistribution of matter than is Ostwald ripening.

FIGURE 3 The domain size distribution, calculated from Eq. A52 for

different values of g: curve 1 is for g ¼ 0.04 pN; curve 2 is for g ¼ 0.16 pN.
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only one domain of radius R ¼ rmax ¼
ffiffiffiffiffiffiffiffiffiffi
Ar=p

p
is present and

here we also have a linear function F2(g), which is described

by the last term in Eq. 49. However the slope of F2(g) is much

less than that of F1(g), so F2(g) is practically parallel to the

abscissa in Fig. 4 A. The intersection point of the two curves

yields a line tension g*. For g , g*, small domains are

favorable (F1 , F2); for g . g*, only one large domain

exists (F1 . F2). We now further illustrate why the ensemble

of small domains can coexist with one large domain. The

total free energy (obtained from Eq. 49) of n ¼ nmax/2 small

domains in equilibrium with one large domain of radius R
(its radius calculated from Eq. 50) is depicted by the dotted

line in Fig. 4 A. For g close to g*, the free energy F3(g) lies

below F1(g) and F2(g) (magnified in Fig. 4 B). The

difference between F3(g) and F1(g) or F2(g) is significant,

;105 kT for g ¼ g*. The range of g for which coexistence is

favorable (i.e., F3(g) , F1(g) and F3(g) , F2(g)) depends

on the number of nanodomains, n. Therefore, determining

the values of n that minimize the free energy of Eq. 49 as a

function of g yields the limits of the coexistence region.

Consider the free energy F as a function of n at a line

tension g. Substituting R from Eq. 50 into Eq. 49 yields

F ¼ nkT ln
n

N
1 2prmingn1 2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAr � np

2
r

2

min

q
: (51)

F(n) is depicted at different line tensions g in Fig. 5 A. At

small g, the system disperses because F(n) decreases mono-

tonically with n (curve 1). For large g, one large domain

forms because F(n) increases monotonically with n (curve

3). For intermediate g, F(n) exhibits a minimum (curve 2),

and so a number of nanodomains coexist with one large

domain. The value of n that yields this minimum depends on

g (see Fig. 5 B): as g becomes larger, the number of minimal

domains at equilibrium becomes smaller. Clearly, F(n)

exhibits a minimum only in a finite interval of g (i.e., gmin #

g # gmax). We calculate the minimum of F(n) with

dF

dn

				
n¼ne

¼ kT ln
ne

N
1 kT1 2prming � g

p
2
r

2

minffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAr � nep

2
r

2

min

q ¼0;

(52)

where ne denotes the number of nanodomains at equilibrium.

Substituting ne ¼ nmax and ne ¼ 1 into Eq. 52, we obtain

gmin � kT
ln N

nmax

2prmin

¼ kT

2prmin

ln
pr2

min

fNa
; (53)

gmax � kT
lnN

2prmin

¼ kT

2prmin

ln
A

a
: (54)

The value gmin depends on rmin and fN, but is independent

of the total area A. For rmin ¼ 40 nm and fN ¼ 0.1, we have

gmin � 0.18 pN and gmax � 0.38 pN. As readily seen from

Fig. 6, gmin and gmax decrease with rmin. Physically, the

smaller is rmin, the greater is the increase in entropy when the

system disperses. Equivalently, an increase in rmin leads to

a decrease in gmin. Moreover, the difference gmax–gmin

decreases with rmin, as readily seen from Eqs. 53 and 54.

These dependences are of consequence because rmin slowly

increases during Ostwald ripening.

It is useful to consider the fractional area occupied by

small and large domains (Fig. 7). We calculated, for each g,

the number of nanodomains at equilibrium (ne obtained from

Eq. 52) and then the equilibrium radius, R, of the large

domain (from matter conservation, Eq. 50) to obtain the total

area of nanodomains pr2
minne (curve A1) and the area of the

large domain (curve A2). For g , gmin, the phase-separated

domains maximally disperse into small domains; a large

domain is not present (region A). For gmin # g , gmax,

nanodomains of minimal size maintain quasi-equilibrium

with a large domain of radius R(g). The greater is the line

tension, the fewer are the number of nanodomains. Equiv-

alently, for higher line tension, the total area of nanodomains

is less and the area of the large domain is greater (region B).

For g . gmax, one large domain exists and nanodomains are

absent (region C).

Our simplified model is based on the assumption that the

population of domains essentially divides into two distinct

groups: the first is the nanodomains of radius rmin; the second

is one large domain of R � rmin, which is equivalent to a

global phase. However, clearly, this separation does not

occur in the vicinity of gmin because here the gap between

small and large domains disappears, i.e., R ; rmin. This

FIGURE 4 The dependence of the free energy of the

system F, calculated from Eq. 49, on line tension g. The

value F1 corresponds to nmax domains of radius rmin, F2

corresponds to one domain of radius rmax, and F3 is for

nmax/2 domains of radius rmin and one large domain. (A)

The entire range of line tensions is used. (B) The dotted

rectangle of A is expanded.
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vicinity of gmin is, however, exceedingly small. Because the

slope of curve A2(g) is extremely steep near g ; gmin, even a

seemingly irrelevant change in g results in a great increase in

the area of the large domain: Eqs. 50 and 52 yield that an

increase in line tension from gmin ¼ 0.18 pN to g ¼ 0.19 pN

induces matter to redistribute from the class of nanodomains

to one large domain of R ; 15 mm � rmin (e.g., see Fig. 7).

This illustrates that, except for a rather small region around

gmin, our simplified model is valid for a wide range of g.

DISCUSSION

Matter redistributes by various modes in the course of phase

separation within multicomponent liquid membranes. We

have quantitatively considered each of these modes and their

superposition. To the best of our knowledge, ours is the first

study of nucleation in a two-dimensional multicomponent

system; the characteristic time tn and the total number of

supercritical nuclei created by this mode have now been

calculated. The duration of the nucleation stage, tn, and the

following independent growth phase, tig, are short (approx-

imately milliseconds), and so ,1% of the nuclei merge

during these stages. Also, at the end of the independent

growth stage, i.e., t ¼ tig, almost all the domains are

distributed within a narrow interval of radii around Æræ ; rc.

After this time, domains enlarge by Ostwald ripening and the

balance between collisional-based merger and fission. We

treated domains as if they were immobile to calculate the ex-

tent and time-course of Ostwald ripening in a two-dimensional

multicomponent membrane (see Appendix). Merger of do-

mains does depend upon mobility, and is independent of

Ostwald ripening. We describe merger by generalizing the

Smoluchowski theory of coagulation to two-dimensional fluid

membranes.

At tr . t . tig, matter redistribution is dominated by

domain merger and two-dimensional budding of nanodo-

mains (Fig. 2, A and B). The resulting distribution of domain

sizes depends strongly on line tension, g. At low g, nano-

domains that have the minimal radius rmin necessary to

maintain quasi-equilibrium are stabilized by the balance be-

tween the entropy of merger and their boundary energy

(Figs. 5 A and 7). At high g, the nanodomains quickly

merge to form micrometer-scale domains; at intermediate

FIGURE 5 The dependence of the free energy F,

calculated from Eq. 51, on the number n of domains of

minimal radius rmin at different values of g. (A) An

illustration of the three different regimes of g. Curve 1: g ¼
0.16 pN (small g) yields a system for which domains

disperse; curve 2: g ¼ 0.185 pN (intermediate g) yields

coexistence of small and large domains; curve 3: g ¼ 0.4

pN (large g) yields a single large domain. (B) The

coexistence of small and large domains for intermediate g

is illustrated for g ¼ 0.183 pN (curve 1), g ¼ 0.185 pN

(curve 2), and g ¼ 0.2 pN (curve 3).

FIGURE 6 The dependence of minimal (gmin) and maximal (gmax) line

tensions on the minimal radius rmin, calculated from Eqs. 53 and 54,

respectively. The area fraction of the domains is fN ¼ 0.1.

FIGURE 7 The dependence of the total area of nanodomains of radius

rmin (curve A1) and the area of a large domain (curve A2) on line tension g.

The vertical dotted lines separate region g , gmin (A), where only nano-

domains exist, from region gmin, g, gmax (B), where nanodomains maintain

quasi-equilibrium with one large domain (i.e., a global phase), and region B
from region g . gmax (C), where one large domain is energetically favorable,

and thus nanodomains are not present.
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g, nanodomains coexist with large domains (Fig. 5, A and B,

and Fig. 7). Merger of large domains is limited by their

mobility and any repulsion between them. Nanodomains can

split off, via budding, from both large and small domains.

Approximations of the model

We assumed that the composition of a phase is independent

of domain size and is homogeneous up to the interface. This

assumption is increasingly valid as domain size increases—

the focus of the present study—and is consistent with growth

via addition of structural units of defined stoichiometry. We

described the rate of domain growth by diffusion of com-

ponents from the bulk surround to the domain. We main-

tained the composition of domains constant, independent of

size, by imposing conditions on the partial fluxes (Eq. 15).

We determined the rate of domain enlargement during the

stage of independent growth by neglecting any competition

between domains for material from the surround. This

approximation should be valid because densities of domains

are low. We also assigned a cutoff radius for diffusion, as is

always necessary to avoid logarithmic singularities associ-

ated with the equations for two-dimensional diffusion (Eq.

14). The cutoff radius may change with the concentration of

the components in the surround, but fixing it will not lead to

significant errors in calculated rates because logarithms vary

slowly. We also introduced a cutoff radius when considering

the rate of domain merger (Eq. 30). To be certain that these

simplifications were appropriate, we verified that the rate of

Ostwald ripening rate in two dimensions under the assump-

tions was practically the same as that calculated when com-

petition between domains was not neglected and a cutoff radius

was not introduced (see Appendix).

The equations of Lifshitz-Slezov theory, originally devel-

oped for a one-component system in three dimensions, gen-

eralize to a multicomponent system if the diffusing substance

is treated as a structural unit (25). This generalization

requires only that interfacial kinetics be fast compared to

diffusion and that the composition of the domains be well

defined and independent of radius. We justify the concept of a

structural unit for a two-dimensional system in the Appen-

dix. We used Smoluchowski theory to obtain kinetics of

domain merger over an extended time-course (Eq. 42).

Although Smoluchowski theory has limitations (38), com-

puter simulations show (27) that the solutions of the

Smoluchowski equations are qualitatively applicable (37).

An exact analytic theory of coagulation has not yet been

developed.

After the independent growth stage, matter redistributes

by Ostwald ripening and merger/fission of the domains.

Because these two mechanisms have drastically different

characteristic rates, it is appropriate to separate them into

nonoverlapping stages. However, they do occur simulta-

neously, and there is some coupling between them. Our for-

malism partially accounts for the small coupling by allowing

rmin to slowly increase in time due to Ostwald ripening.

We can consider domain ensemble evolution as a sequence

of quasi-equilibrium states that correspond to different values

of rmin. The situation is analogous to an ideal gas in a container

with a slowly moving piston. If the piston moves slowly

enough, the gas is essentially at equilibrium—defined as

quasi-equilibrium—at every time, even though the volume

of the container is slowly increasing (in analogy to rmin in-

creasing for our case). We assume that in our quasi-equi-

librium states, there is almost no redistribution of monomers

between the surround and nanodomains. Eventually, a true

equilibrium state—two global phases—of phase separation is

reached. We estimate, for g ¼ 0.2 pN, the time necessary to

reach this equilibrium state by noting that gmin and gmax

decrease with increasing rmin (see Eqs. 53 and 54 and Fig. 6).

From Fig. 6, it follows that the nanodomain ensemble is stable

for rmin , 40 nm (g, gmin), but the system transforms into a

global phase for rmin . 100 nm. The time for rmin to enlarge

from 40 nm to 100 nm thus provides an estimate for the time to

reach equilibrium. From Eqs. 25 and 26, it is ;3 h. The

accuracy of this estimate is limited by our assumption that

Ostwald ripening occurs for immobile nanodomains.

In the Appendix, we used the traditional theory of dilute

solutions (subject to 1 � n� N) to calculate the distribution

of domain size after the independent growth stage (42,43), an

approach used for similar membrane problems (23,44).

When fN ¼ 0.1, the ideal gas approximation leads to

Eq. A52, which is correct for small line tensions. In the

coexistence region, gmin , g , gmax, the condition n �
1 violates an assumption of the approximation, and so we

formulated a simplified model, which allowed us to obtain

results that were self-consistent over a wide range of param-

eters. This model is not applicable, however, for a narrow

region of line tension around g ¼ gmin and it does not

describe a gradual transition from small nanodomains to

slightly larger domains.

We assumed that the domains were circular for the range

of line tensions considered. This approximation is valid be-

cause thermal fluctuations do not significantly alter the ge-

ometry of the interface; as derived by standard procedures

(45,46), the normalized mean fluctuation for large domains is

ffiffiffiffiffiffiffiffiffiffi
Ædr2æ

p
r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3kT

4pgr0

s
; (55)

where Ædr2æ is the mean-squared fluctuation and r0 is the

radius of domain. Even for a small tension, g ¼ 0.1 pN,

which is less than gmin ¼ 0.18 pN, the normalized mean

fluctuation is only ;3% for a r0 ¼ 10 mm domain. Note that

long wavelengths are cut off for nanodomains, so there are

fewer boundary fluctuations, leading to less entropy for

nanodomains compared to larger domains; we neglect this

effect. We also note that this article analyzes the metastable

initial state between the binodal and spinodal curves and far
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enough from the critical point, which is very different from

an unstable initial state (e.g., near the critical point) where

much larger fluctuations are predicted by simulation.

The main parameters that enter our equations are fN, g,

and the diffusion coefficients of lipid molecules, D, and of

domains of various sizes, Dd. The value D is known and the

Saffman-Delbruck equation allows us to calculate Dd. We

used published experimental data for the area fraction fN

(18), but we also varied this parameter. Line tension g

has been estimated as 0.9 pN for a single lipid composition

(17). We have shown that our theoretical predictions are not

very sensitive to the precise values of fN and g, and thus

our conclusions should be generally valid.

Stabilization of nanodomains

Colloidal particles can rapidly coagulate if they are not

kinetically stabilized (37,38). However, it has also been

known for half a century that, at thermodynamic equilibrium,

immiscible colloidal particles will remain dispersed if the

interfacial tension is sufficiently low (47). However, nano-

domains in cellular membranes and lipid bilayers are miscible

with their surrounding membrane solution and thus it was

possible that miniscule line tensions would make it impos-

sible for entropy to stabilize nanodomains against merger. We

have now explicitly determined the conditions necessary for

nanodomains to remain dispersed in membranes. If the time

interval is not too long (,1 h), our system is effectively a

suspension of immiscible two-dimensional domains.

Nanodomains remain in quasi-equilibrium for low line

tension (g , gmin) at the conclusion of the independent

growth stage. At these low line tensions, the nanodomain

size distribution is narrowly peaked around r ; rc ; rmin

(see Fig. 3), because they are effectively arrested in size by

an ‘‘entropic trap’’. Nanodomain growth occurs by Ostwald

ripening: for r , rmin ¼ rc, nanodomains quickly dissolve

(see Eq. A20) and this promotes the slow enlargement of

nanodomains for r$ rmin. For greater line tension (gmin , g

, gmax), a fraction of the nanodomains merge and a global,

phase-separated region is created. At higher line tension

(g. gmax), nanodomains quickly merge to micrometer-scale

domains, which then slowly evolve. In principle, the rate of

merger is limited by relatively low mobility of the domains

and any repulsion that kinetically hinders their merger.

The mobility of the domains does not vary appreciably

with size (Eq. 35), but the repulsion forces do; these forces

are of great consequence only for large domains. We esti-

mated these repulsions by ignoring chemical contributions

and assuming that repulsions are caused by the elastic

membrane deformations that must occur at the boundary of a

domain and surround of different thickness (41). For this

elastic model, the height of the repulsive barrier is close to 1,

W ¼ 1.2, for r ; 40 nm, but is orders-of-magnitude higher,

W ; 104, for a 1-mm domain (Eq. 43). Undulations of the

boundary lower the barrier.

The relation of theory to experiment

In planar lipid bilayers and lipid vesicles (10–13,15), do-

mains are circular and slowly (;1 h) enlarge through merger

for radii greater than several microns. This is in agreement

with our estimates for the rate of domain merger (Eq. 42).

The estimation of g � 0.9 pN for large domains in lipid

vesicles (17) is in accord with our prediction that micrometer

scale domains appear for g . gmax ; 0.4 pN. Nanodomains

have also been detected in lipid model systems (18), but their

physical properties, such as line tension and evolution, have

not yet been determined.

In cellular membranes, the causes of nanodomain (raft)

formation are quite controversial. It is even still debated

whether lipid and protein do associate into rafts. Some

studies support their existence and stability, and infer their

size (26 6 13 nm) (7), whereas other studies favor transient

or nonexistent structures (8). The line tension of rafts in

cellular membranes has not yet been measured, and raft

dynamics have not been explored. If line tensions are small,

this article shows that rafts can be quantitatively described as

a system in thermodynamic quasi-equilibrium.

If it should prove that line tension of small rafts is high,

several mechanisms may be contributing to their stability.

Rafts may not be a product of phase separation, but rather

form by a process that is physically equivalent to wetting: if a

protein served as a nucleation center for condensing specific

lipids around it, a thin film of a lipid phase, different than

the surrounding homogeneous membrane, would be created

(23). This is analogous to the formation of a thin liquid film

on a solid surface exposed to vapor. If a film of lipids caused

attraction between proteins, larger lipid/protein domains

would result (24). The size distribution of domains that form

in this way have been derived by methods of statistical

mechanics (23) and are similar to those obtained in this

study. Alternatively, rafts may emerge as a consequence of

exocytosis and endocytosis (2), particularly if the uptake of

rafts depends on the size of the raft. In this way, cells could

perpetuate the nanoraft state by removing large rafts from the

plasma membrane before the point of global phase change,

and delivering monomers that supersaturate the plasma

membrane upon mixing with it. More physically, because a

cell membrane is an open system (rather than isolated, as we

and others assume for convenience) in contact with intra-

cellular pools of membranes, rafts could form as a result of

dissipative processes.

Regardless of the physics that underlie cellular membrane

domain formation, our study leads us to a novel suggestion.

Because of the major result showing that fission and fusion

are much faster (and thus more efficient) mechanisms for

moving lipids and proteins from one object to another

compared to ripening, this major result may be true for the

case of bilayer membranes as well. If so, then we can more

readily understand why eukaryotic cells use membrane (not

domain) fission and fusion for cargo and membrane transport
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to almost the exclusion of creating carriers within the

cytoplasm for shuttling small hydrophobic molecular weight

components about. The system of vesicular traffic so widely

studied today may have its roots in the physics of colloids.

APPENDIX

The growth law for a macroscopic nucleus
in a multicomponent system

Equation 15 provides a means to calculate the growth of a macroscopic

nucleus in a two-dimensional multicomponent membrane. However, to

evaluate ji, we must first determine the value of cir that appears in Eq. 14. To

obtain cir, we rewrite Eq. 4 in the form

rc ¼
ag

kTln
Q

i

c
ni

i =KN

� �; KN ¼ exp m�+
i

nim
0

i

� ��
kT

� �
:

(A1)

As described in Slezov and Schmelzer (25), Lifshitz and Pitaevskii (30), and

Slezov (32), Eq. A1 leads to

ln
Y

i

c
ni

ir =KN

 !
¼ ag

kTr
¼ rc

r
ln
Y

i

c
ni

i =KN

 !
; (A2)

where cir is the equilibrium concentration of ith component near a nucleus of

radius r. Taking the limit r / N in Eq. A2, we obtain

KN ¼
Y

i

c
ni

iN; (A3)

where ciN is the equilibrium concentration of ith component at a straight

interface. We transform Eq. A2 into a logarithmic form, and for small levels

of supersaturation, expand the logarithm and use Eq. A3 to obtain

+
i

ni

cir � ciN

ciN

¼ rc

r
+

i

ni

ci � ciN

ciN

: (A4)

Equations 15 and A4 yield cir for every i.

To calculate the rate of increase of the radius of nucleus, we use Eqs.

1 and 15 to express dr/dt as a function of the partial fluxes ji,

dr

dt
¼ 1

2pr
+

i

jiai ¼
1

2pr
+

i

ji
ni

niai ¼
a

2pr

ji
ni

: (A5)

We multiply both sides of Eq. A5 by n2
i =ciN, sum over all components,

and use Eq. 14 to obtain

dr

dt
+

i

n
2

i

ciN

¼ a

2pr
+

i

niji
ciN

¼ aD

rlnðr�=rÞ
+

i

ni

ci � cir

ciN

: (A6)

Using Eq. A4 to exclude cir from Eq. A6, we obtain

dr

dt
+

i

n
2

i

ciN

¼ aD

r
2
lnðr�=rÞ

ðr � rcÞ+
i

ni

ci � ciN

ciN

; (A7)

which yields the equation

dr

dt
¼ +

i

n
2

i

ciN

� ��1
aD

r
2
lnðr�=rÞ

ðr � rcÞ+
i

ni

ci � ciN

ciN

: (A8)

We introduce the total supersaturation D and the effective equilibrium

concentration cc̃cN,

D ¼ +
i

ni

ci � ciN

ciN

; (A9)

cc̃cN ¼ +
i

n
2

i

ciN

� ��1

: (A10)

Equations A1 and A3 yield, for small supersaturation,

D ¼ ag

kTrc

: (A11)

Equation A8 takes the form

dr

dt
¼ aDcc̃cN

r
2
lnðr�=rÞ

ðr � rcÞD ¼ a
2
Dcc̃cNg

kTrcr
2
lnðr�=rÞ

ðr � rcÞ: (A12)

We use Eq. A12 in the main text to obtain the mobility of nuclei, U, in

r-space. The only difference between Eq. A12 derived for a multicomponent

system and the equation derived for a one-component system case is the

substitution cN/cc̃cN. It is of practical importance that the equations of a

one-component system readily generalize to multicomponent systems.

Estimating the duration of the nucleation stage

In the main body of text, we assumed that nucleation ceases when the flux

decreases by a factor 10. To find the critical radius at the end of nucleation,

rc
f, we use Eq. 18,

r
in

c

� �5=2
lnðr�=rin

c Þ
r

f

c

� �5=2
lnðr�=rf

cÞ
exp 2

pgðrf

c2r
in

c Þ
kT

� �
¼ 1=10; (A13)

where the initial critical radius rc
in can be obtained from Eqs. A9 and A11 for

ci ¼ ci
in (ci

in are the initial concentrations). Equation A13 defines rc
f as a

function of rc
in and g, which allows us to use Eqs. A9 and A11 to find the

concentrations ci
f at t ¼ tn,

+
i

ni

c
f

i2ciN

ciN

¼ ag

kTrf

c

: (A14)

The composition of the nucleus remains constant during nucleation,

allowing us to write (see also Eq. 15)

c
in

i 2c
f

i

ni

¼ c
in

k 2c
f

k

nk

¼ . . . : (A15)

Multiplying the reduction in concentration by cc̃c21
N and using Eq. A15, we

obtain

c
in

i 2c
f

i

ni

cc̃c
21

N ¼ c
in

i 2c
f

i

ni

+
i

n
2

i

ciN

¼ +
i

ni c
in

i 2c
f

i

� �
ciN

¼ ag

kTr
in

c

2
ag

kTr
f

c

:

(A16)

Hence, the total number of created nuclei Nf is

Nf ¼
+

i

ai c
in

i 2c
f

i

� �
p r

f

c

� �2 ¼ a

p r
f

c

� �2

c
in

i 2c
f

i

ni

¼ a
2cc̃cNg

pkT r
f

c

� �2

1

r
in

c

2
1

r
f

c

� �
:

(A17)

We estimate the nucleation time tn from the ratio of the total number of

nuclei created, Nf, Eq. A17, to the average value of the flux. This yields

tn �
2Nf

jðrc ¼ ri

cÞ
: (A18)
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Eqs. A13, A17, and A18 are used to obtain numerical estimates for rc
f, Nf,

and tn as described in the main text.

Dissolution of a subcritical domain

In the main text, we assumed that after a subcritical nanodomain pinches off

a large domain, it quickly dissolves and equilibrium is maintained among the

ensemble of subcritical nuclei. In fact, fast dissolution is not merely an

assumption, but a physically correct assertion.

Diffusion of matter in the background solution limits the rate at which

a domain of radius rd , rc moves toward smaller radii in r-space. We use

Eq. A12 to estimate the dissolution rate of a subcritical nanodomain. Be-

cause ln(r*/r) and rc do not change appreciably during the nucleation stage,

we can consider them constant values and write

dr

dt
¼ a2Dcc̃cNg

kTrc lnðr�=rcÞ
ðr2rcÞ
r

2 : (A19)

Equation A19 is easily integrated for r(0) ¼ rd and r(tdiss) ¼ 0, yielding

the characteristic time of dissolution tdiss,

tdiss � r
2

d

kTrc lnðr�=rcÞ
a

2
Dcc̃cNg

: (A20)

Using the parameters of our standard bilayer and g ¼ 0.4 pN, we obtain

tdiss ; 2 3 1023 s for rd ¼ 20 nm and rc ¼ 40 nm. The value tdiss is small

and independent of fN.

Ostwald ripening in the case of a two-dimensional
multicomponent system

We show that the approach of Marqusee for a one-component, two-

dimensional system (36) generalizes to the case of a two-dimensional

multicomponent membrane. The assumption that the composition of an

evolving phase does not depend on nucleus size allows us to introduce fixed

stoichiometric coefficients fnig. We describe growth of a nucleus as the

addition of structural units where the area per structural unit is

a ¼ +
i

niai; (A21)

and ai is the cross-sectional area per molecule of the ith component. Rather

than introduce a cutoff radius, we consider the ensemble of domains as an

effective medium. We assume that the partial flux, ji, of the ith component

(number of ith component molecules passing through the interface of a

nucleus of radius r per second) has the form of

ji ¼ kðrÞðci2cirÞ: (A22)

We introduce k(r) to account for effects of competition between nuclei;

this removes the divergences that occur in the two-dimensional steady-state

diffusion equation. We now obtain the factor k(r) (Eq. A31). The change of

bulk concentration ci is

@ci

@t
¼ 2

Z N

0

kðrÞnðr; tÞðci2cirÞdr ¼ 2ci

Z N

0

kðrÞnðr; tÞdr

1

Z N

0

kðrÞnðr; tÞcirdr; (A23)

where n(r, t) is the domain distribution function; n(r, t)dr is thus the number

of domains of radius (r, r1dr) per cm2. The diffusion equation for the local

concentration cĉciðR~; tÞ can be written as

@cĉciðR~; tÞ
@t

¼ Dð=2cĉciðR~; tÞÞ2Dj
22cĉciðR~; tÞ1Si; (A24)

where D is the diffusion coefficient (equal for all components). The sink

term is

Dj
22 ¼

Z N

0

kðrÞnðr; tÞdr: (A25)

The source term is

Si ¼
Z N

0

kðrÞnðr; tÞcirdr: (A26)

The balance in the bulk at steady state yields

Dj
22
ci ¼ Si: (A27)

Moreover, in steady state, @cĉciðR~; tÞ=@t ¼ 0. That is, cĉciðR~; tÞ ¼ cĉciðR~Þ.
Using Eqs. A24–A27, we obtain

ð=2
2j

22ÞðcĉciðR~Þ2ciÞ ¼ 0: (A28)

Here, j is effectively a screening length. The obvious boundary

conditions for Eq. A28 are cĉciðrÞ ¼ cir and cĉciðNÞ ¼ ci. The solution of Eq.

A28 for steady-state diffusion is

cĉciðRÞ ¼ ci1ðcir2ciÞ
K0ðR=jÞ
K0ðr=jÞ

; (A29)

where K0(R/j) is a modified Bessel function of zero-order. The partial flux is

ji ¼ 2pRD
@cĉciðRÞ
@R

� �				
R¼r

¼ 2pD
r

j

K1ðr=jÞ
K0ðr=jÞ

ðci2cirÞ; (A30)

where K1(r/j) is a modified Bessel function of first-order. A comparison of

Eqs. A22 and A30 yields

kðrÞ ¼ 2pD
r

j

K1ðr=jÞ
K0ðr=jÞ

: (A31)

Using Eq. A25, we obtain

j
21 ¼ 2p

Z N

0

r
K1ðr=jÞ
K0ðr=jÞ

nðr; tÞdr: (A32)

To obtain the growth law, we invoke constant stoichiometry of com-

ponents within a domain, independent of size (see Eq. 15). The growth law

follows from Eqs. 15, A4, and A22 in a manner similar to that used to derive

growth in the first section of the Appendix. The final expression is

dr

dt
¼ acc̃cNkðrÞ

2pr
2 ðr2rcÞD: (A33)

Using Eqs. A11 and A31, we rewrite Eq. A33 as

dr

dt
¼ cc̃cNaD

j
D2

ag

kTr

� �K1ðr=jÞ
K0ðr=jÞ

: (A34)

The domain distribution function obeys the continuity equation in r-space of

@nðr; tÞ
@t

1
@

@r
nðr; tÞdr

dt

� �
¼ 0; (A35)

where dr/dt is defined by Eq. A34. The law of mass conservation for the

components has the form

ci ¼ c
in

i 2ni

Z N

0

pr
2

a
nðr; tÞdr; (A36)

where ci
in is initial bulk concentration of ith component. Therefore
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D ¼ Din2
p

acc̃cN

Z N

0

r
2
nðr; tÞdr; (A37)

where Din is initial total supersaturation. In the limit t/N, we obtain from

Eq. A37 that

Din2
p

acc̃cN

Z N

0

r
2
nðr;NÞdr ¼ D/0: (A38)

Hence, the area fraction of new (domain) phase fN can be expressed as

fN ¼ p

Z N

0

r
2
nðr;NÞdr ¼ Dinacc̃cN: (A39)

To find n(r, t) and other characteristics of Ostwald ripening we transform

to dimensionless variables and solve the system of Eqs. A32, A34, A35, and

A37. The dimensionless radius is

r̃ ¼ r=a; where a ¼ ag=kT; (A40)

and dimensionless time and screening length are

t ¼ t aDcc̃cN=a
2

and j̃ ¼ j=a: (A41)

We used Eq. A39 to renormalize the distribution function n(r, t) as

nðr; tÞdr ¼ Dinacc̃cN

pa
2 ñðr̃; tÞdr̃ ¼ fN

pa
2ñðr̃; tÞdr̃: (A42)

In dimensionless variables, Eq. A32 yields

j̃
21 ¼ 2fN

Z N

0

r̃
K1ðr̃=j̃Þ
K0ðr̃=j̃Þ

ñðr̃; tÞdr̃: (A43)

The growth law is

dr̃

dt
¼ 1

j̃
D2

1

r̃

� �
K1ðr̃=j̃Þ
K0ðr̃=j̃Þ

: (A44)

The continuity equation is

@ñðr̃; tÞ
@t

1
@

@r̃
ñðr̃; tÞdr̃

dt

� �
¼ 0: (A45)

The mass conservation law is

D ¼ Din 12

Z N

0

rr̃r2ñðr̃; tÞdr̃
� �

: (A46)

The system of the dimensionless Eqs. A43–A46 is the same as the system

of dimensionless Eqs. 3.11–3.14 from Marqusee (36), although the process

we used to make variables dimensionless, Eqs. A40–A42, is different from

the one used in Marqusee (36). Therefore, the average dimensionless radius

derived from Eqs. A43–A46 is the same as that obtained in Marqusee (36),

Ær̃æ ¼ b0t
1=3
; (A47)

where b0 is a factor of order one, as calculated numerically. Using Eqs. A40

and A41 to transform back to the dimensional variables, we obtain

Æræ ¼ b0

Da
2
gcc̃cN
kT

� �1=3

t
1=3
: (A48)

Similarly, the density of domains is given by

NrðtÞ ¼
Z N

0

nðr; tÞdr ¼ fN

pa
2

Z N

0

ñðr̃; tÞdr̃ ¼ fN

pa
2r0t

22=3

¼ fN

p
r0

Da
2
gcc̃cN
kT

� �22=3

t
22=3

; (A49)

where r0 is a factor of order one, calculated numerically. We have thus

demonstrated that the substitution cN/cc̃cN ¼ +
i
n2

i =ciN

� �21
allows one to

transition from a one-component to a multicomponent system.

Domain size distribution in quasi-equilibrium

Let us consider the regime where Ostwald ripening contributes very slowly

and to a modest increase in rc. According to Eq. 27, the characteristic time tr

of this process for Æræ; 50 nm and g; 0.2 pN is ;1 h. At t. tr, the system

goes asymptotically into the global phase, which is the true equilibrium state.

Therefore, at the time interval tig , t, tr we can assume that the system is

in a state of quasi-equilibrium. Consequently, standard approaches of

statistical thermodynamics can be applied to calculate the domain size

distribution for times tig , t, tr. (42,43). We consider a domain ensemble

with rmin # r # rmax, where rmin ¼ Æræ at t ¼ tig and rmax is defined by the

condition that matter is conserved. We assume that the domains have already

resulted from the first-order phase transition and each domain has the same

composition as the new global phase. We derive the domain size distribution

considering discrete, rather than continuous, values of radii. In our model a

domain of radius rm contains m more structural units than does a minimal-

sized domain. Quantitatively, rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

min1mða=pÞ
p

; m ¼ 0 . . .mmax,

where mmax ¼ ðAr2pr2
minÞ=a, a is the area per structural unit, and Ar is

the total area occupied by domains. The system is isolated, so matter is

conserved as

+
mmax

m¼0

pr
2

mnm ¼ Ar ¼ fNA; (A50)

where nm is the number of domains with the radius rm and fN is the

fractional area occupied by domains. The part of the free energy of the

system dependent on nm is given by (23,44)

F ¼ +
mmax

m¼0

ðnmkT ln
nm

eN
1kTnm12prmgnmÞ; (A51)

where N ¼ A/a is the total number of lipid molecules in a monolayer. The

first term in Eq. A51 corresponds to the configurational entropy for dilute

solutions, the second term is the kinetic energy (kT/2 per degree of freedom,

two degrees of freedom per domain) and the last term is the boundary energy

FIGURE A1 The dependence of the Lagrange multiplier l, numerically

calculated from Eq. A53, on line tension g.
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of the domain. Equation A51 is valid only if 1 � nm � N. We neglect

interactions between domains and treat the domain ensemble as an ideal gas

(23). Minimization of the free energy, Eq. A51, subject to the constraint of

Eq. A50, yields the domain size distribution

nm ¼ Nexp 2
kT12pg rm1lðgÞpr2

m

kT

� �
; m ¼ 0 . . .mmax;

(A52)

where l(g) is the Lagrange multiplier of the constraint. To determine l(g),

we substitute nm of Eq. A52 into Eq. A50 and obtain the equation

+
mmax

m¼0

pr
2

mNexp 2
kT12pg rm1lðgÞpr2

m

kT

� �
¼ Ar: (A53)

The numerical solution of Eq. A53 for Ar ¼ 1025 cm2 is shown in Fig.

A1. For g , 0.18 pN, l(g) . 0 and the term within the exponential of Eq.

A52 monotonically decreases with rm. From Eq. A52 and the numerically

evaluated l(g), we obtain the number of domains as a function of domain

radius for different values of g (Fig. 3). As g increases, the reduction in

boundary energy upon merger becomes more significant. Even for a

relatively small increase in line tension (g2 – g1 ¼ 0.12 pN for curves 1 and 2

in Fig. 3), the distribution shifts to large domain sizes. At sufficiently large g,

a single large domain (i.e., a global phase) must exist if the system is to reach

minimum free energy. Unfortunately, it was not possible to find the domain

size distribution (i.e., nm, for m ¼ 0. . .mmax) from Eqs. A51–A53, at l , 0,

because the condition nm � 1 contradicts nm ; 1, which must hold for a

single large domain. We overcame this problem by simplifying the system

(see text).
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